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Tin is widely used as a modifier for transition metal catalysts to
improve their reactivities and product selectivittdsWe have
recently shown that BBnH is a good reagent for the introduction
of large numbers of phenyl-substituted tin ligands into carbido-
pentaruthenium carbonyl complexeSurprisingly, there are very
few examples of polynuclear rhenium carbonyl cluster complexes
containing tin ligand$.We have now found that BBnH also reacts
with the reactive rhenium complex REO)s(u-H)[u-C(H)C(H)-
Bul® to yield the new dirheniumditin complex Re(CO)g(u-
SnPh),, 1, in 52% yield when allowed to react in hexane solvent
at reflux for 2 h® Compoundl was characterized by single-crystal
X-ray diffraction analysis, and an ORTEP diagram of its molecular
structure is shown in Figure “LThe crystal ofl contains two

Figure 1. ORTEP diagram of the molecular structure of (@)g(u-
SnPh),, 1, showing 40% thermal ellipsoid probability. Selected bond
distances (A): molecule 1: Re@Re(1*) = 3.1971(4), Re(1Sn(1) =
2.7429(4), Re(LySn(1*) = 2.7675(4); molecule 2: Re(2Re(2*) =
3.1902(4) A, Re(2)Sn(2)= 2.7445(4) A, Re(2rSn(2*) = 2.7682(5) A.

crystallographically centrosymmetric molecules in the asymmetric
unit. The molecule contains two Re(CQroups that are linked
by two bridging SnPhgroups, see Scheme 1.
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Figure 2. (A) HOMO, byq orbital of 1. (B) HOMO-2, g orbital of 1.

the g HOMO, shown in Figure 2A, which is representative of
these interactions and is supported by the structural analysis which
shows normal ReSn distances, ReSn= 2.7429(4) A [2.7445(4)

A] and 2.7675(4) [2.7682(5) A]. The only significant direct Re

Re bonding interaction is shown in thg HOMO-2, shown in
Figure 2B.

The importance of the ReSn interactions inl is further
demonstrated by its reaction with Pd(PBu The reaction ofl
with Pd(PBUg), at room temperature provided the novel complex
PbRe(CO)g(1-SnPh),(PBUs),, 2, in 67% yieldl® The structure
of 2 was also established crystallographically, and an ORTEP
diagram of its molecular structure is shown in Figuré 8omplex

Figure 3. ORTEP diagram of the molecular structure 0LRel(CO)g(u-
SnPh),(PBU),, 2, showing 30% thermal ellipsoid probability. Selected bond
distances (A): ReRe= 3.262(1), Re(1)ySn(1)= 2.7674(5), Re(1ySn(1*)

Benzene, a coproduct, accounts for the fate of the cleaved phenyl_ ; g>15(5), Re(1}Pd(1)= 2.8580(5), Pd(1ySn(1)= 2.7185(7), Pd(L;
groups. According to electron counting procedures, the complex p(1) = 2.4093(17).

should contain a ReRe bond for each metal atom to achieve the
18-electron configuration. The Rd&Re bond distance at 3.1971(4)
A [3.1902(4) A] is long, but short enough to allow for some direct
Re—Re interaction. The ReRe distance in R€CO),, which
contains a ReRe single bond, is 3.042(1) &To understand the
metal-metal bonding irl better, we have performed Fenskéall
molecular orbital calculationsThe results of these calculations
show that the metalmetal bonding inl is strongly dominated by
Re—Sn interactions. This is illustrated by the contour diagram for
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2 is crystallographically centrosymmetric. The molecule can be
viewed as a bis-Pd(PBjiadduct ofl; that is, two Pd(PBW) groups
were added to the intact moleculeThese groups occupy bridging
positions across two of the four R&n bonds irl, see Scheme 2.
Each Re-Pd bond contains a semi-bridging carbonyl ligand. The
Re—Pd bond distance is normal, 2.8580(5) A. The-Sah bond
distance, 2.7185(7) A, is significantly longer than that typically
found for Pd-Sn single bonds, e.g. 2.6082(3) A observed in Pd-

10.1021/ja0443169 CCC: $30.25 © 2005 American Chemical Society



COMMUNICATIONS

molecular orbital calculations fat and 2. This material is available
free of charge via the Internet at http://pubs.acs.org.
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(PBU,CH,CH,PBU,)(H)SnMe&.12 The Re-Re bond in2 is even
longer than that irl, Re(1-Re(1)= 3.262(1) A. The palladium-
bridged Re-Sn bond, Re(5Sn(1)= 2.7674(5) A, is not signifi-
cantly different from that irL, but curiously, the ReSn bond that

is not directly bonded to the palladium atoms is significantly
elongated, Re(HSn(1*) = 2.8215(5) A.

To understand the nature of the bonding, we have performed
Fenske-Hall molecular orbital calculations o by adding two
Pd(PH,) groups to the model developed fbabové using idealized
Con symmetry. Contour diagrams for the HOMO 42e0d HOMO-

1, 1g for 2 derived from the HOMO and HOMO-2 dfare shown
in Figure 4, A and B, respectively. As can be seen, the-Re
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Figure 4. (A) HOMO, 2g, orbital of 2. (B) HOMO-1, 13 orbital of 2.

overlap increases for the Pd-bridged-R&n bond and decreases
for the unbridged ReSn bond in the HOMO. This explains the
weakening and lengthening of the unbridged—+8& bond. The
Re—Pd and PéSn interactions are shown by the HOMO-1 in
Figure 4B. As can be seen, this bond is dominated by Rk
interactions. The PeSn interactions are minimal, which explains
why the Pd-Sn bond distance is so long.

We have recently demonstrated the ability of Pd(BBand
Pt(PBUs) groups to form electron-deficient bonds across transition
metat-transition metal bonds in polynuclear metal carbonyl
complexes3 These new results now show that Pd(RBgroups
can also form electron-deficient metahetal bonds across transition
metamain group metal bonds. Further studies are in progress. (13)
The facile introduction of tin- and palladium-containing groups into
metal carbonyl clusters may make available a range of new
trimetallic carbonyl cluster complexes that can serve as precursors
to new nanoclusters containing tin that could find applications in
heterogeneous catalygis*
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